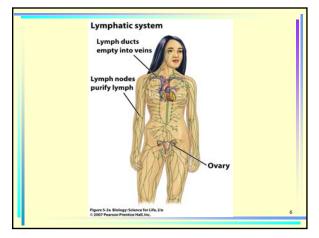
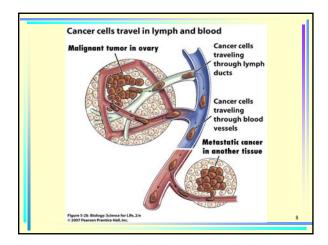


5.1 What Is Cancer?

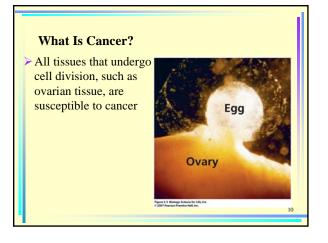
- ______ is the process through which a cell copies itself
- begins when a cell divides although it should not
- Unregulated cell division leads to a _____, a mass of cells with no apparent function in the body

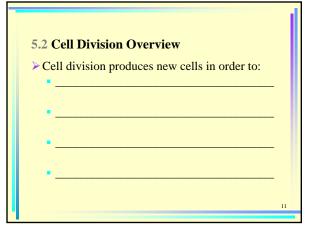


What Is Cancer?


- Cancer travels through the body by way of the lymphatic and circulatory systems
- The lymphatic system collects fluids lost from capillaries

_____ are structures that filter lost fluids, called lymph



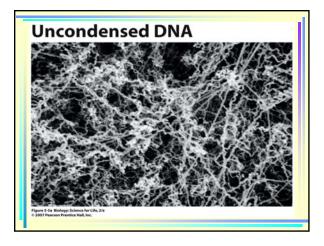

What Is Cancer?

After they metastasize, cells gain access to the circulatory system, and the heart allow them to travel almost anywhere in the body

Cell Division Overview Asexual reproduction: Make exact copies Does not need two parents Single celled organisms, like amoebas, carry out asexual reproduction

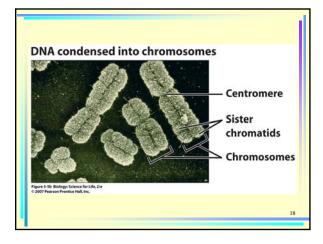
12

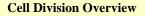
Cell Division Overview

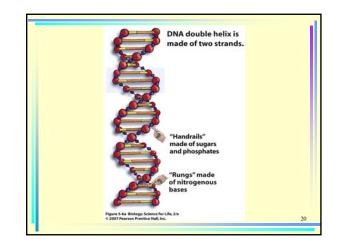

- Some multicellular organisms carry out asexual reproduction
- Plants grow from clippings

Cell Division Overview

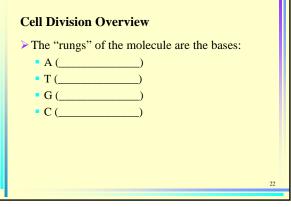
- Before dividing, a copy of DNA (deoxyribonucleic acid) must first be made
- DNA is located within the nucleus and carries ________ – instructions for building the proteins that cells require

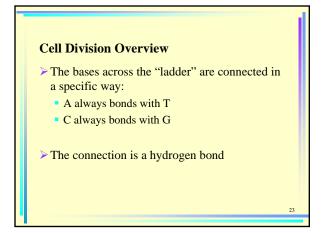

Cell Division Overview

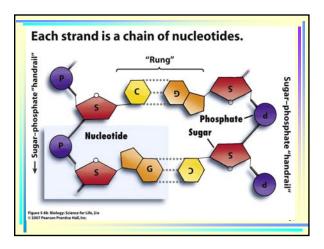

- DNA is organized into structures called ______ which can carry hundreds of genes along their length
- The number of chromosomes in each cell depends on the organism: humans have 46
- DNA starts out in a string-like, uncondensed form (_____)

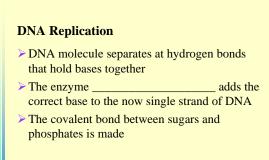

Cell Division Overview

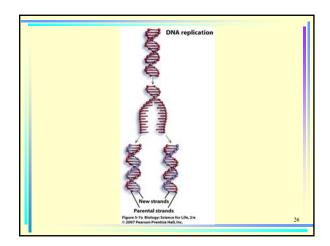
- Before cell division, DNA is condensed into short, linear chromosomes
- When a chromosome is replicated during cell division, the copy carries the same genes
- Each chromosome is copied and the copy is called a ______
- The sister chromatid is connected to the original DNA by a ______

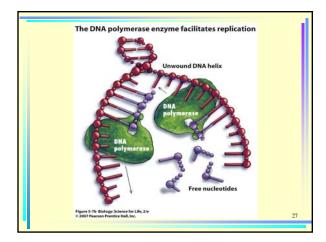


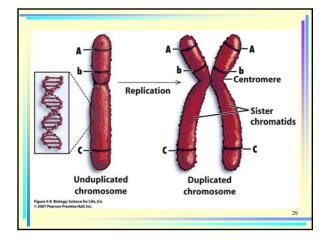


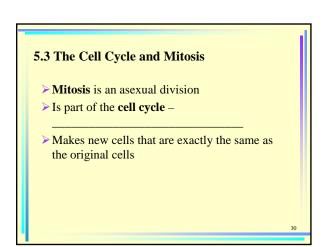

- DNA is a double stranded molecule made of two single strands of nucleotides that are bonded together
- The DNA molecule looks a lot like a twisted rope ladder

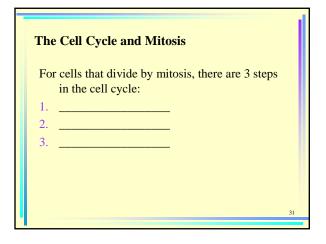


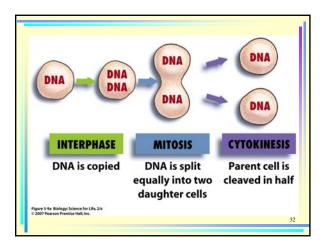




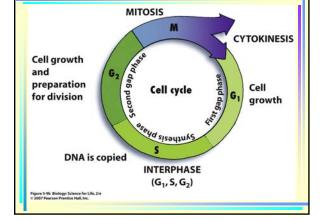







DNA Replication

- > This results in two identical DNA molecules
- Each new DNA molecule is half new and half from the old molecule
- When an entire chromosome is copied, the two sister chromatids are connected at the centromere
- > Now the cell is ready to divide



Interphase

- > Most of a cell's life is spent in **interphase**
- Normal functions are carried out
- Three stages of interphase:
 - _____

.

Interphase

- ≻G1: first gap or growth phase
 - Organelles are duplicated
 - Cell gets larger
- ➤ S: synthesis phase
 - DNA is copied in this phase
 - Chromosomes are replicated
 - Get sister chromatids connected by centromeres
- ≻G2: second gap phase
 - Synthesis of proteins necessary for mitosis

Mitosis

- The purpose of mitosis is to separate the sister chromatids so that each new cell has a complete set of chromosomes
- Steps of mitosis:
- •
- <u>-----</u>
- _____

Mitosis

Prophase:

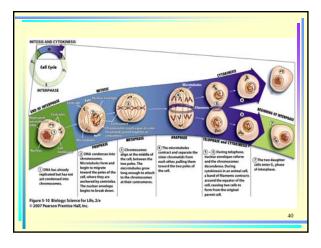
- > Replicated chromosomes condense
- Microtubules (spindle fibers) form at the poles (ends) of the cell
- > The **nuclear envelope** disintegrates
- Microtubules attach to the centromeres of chromosomes

Metaphase:

Replicated chromosomes line up across equator of cell

Mitosis

Anaphase:

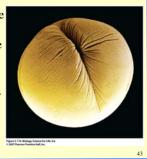

- > The centromere splits
- Microtubules pull sister chromatids apart towards poles

Telophase:

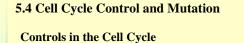
- Nuclear envelopes reform around chromosomes
- > Chromosomes revert to uncondensed form

The cell itself divides in half creating two identical daughter cells

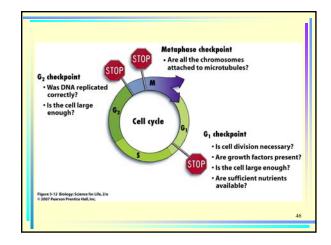
Cytokinesis


For plant cells:

- Rigid cell wall prevents cell membrane from pinching in
- Prophase, metaphase, anaphase, and telophase similar to animal cells
- During cytokinesis, a _____ form from vesicles made of cellulose and proteins that will become a new cell wall

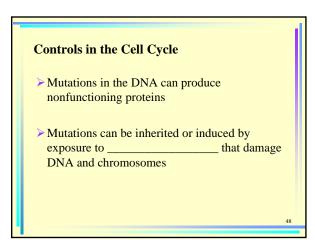

Cytokinesis

- Animal cells produce a band of filaments (proteins) that divide the cell in half
- The band of proteins contracts to pinch apart the 2 cells



Cytokinesis

- After cytokinesis, cells reenter the G1 phase of interphase and repeat the cell cycle if the conditions are right
- Cells that go through the cell cycle in unfavorable conditions can lead to tumors



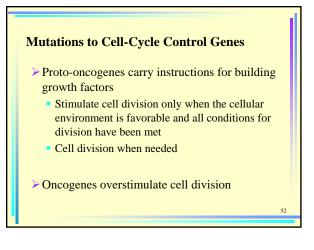
- >_____ exist in the cell cycle
- Cell determines if cell is ready to enter next part of cell cycle

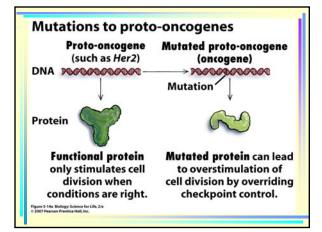
Controls in the Cell Cycle

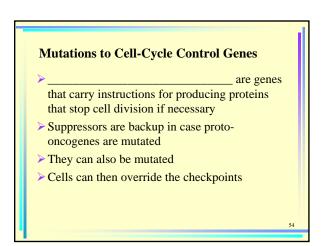
- When the proteins that regulate the cell cycle don't work, the cell divides uncontrollably
- > This results in a tumor

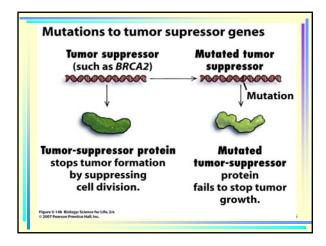
Mutations to Cell-Cycle Control Genes

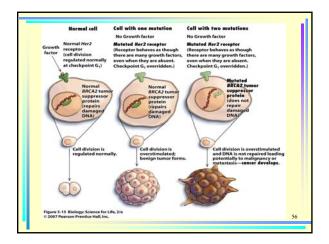
- Mutations in the DNA can produce nonfunctioning proteins
- > Mutations can be in cell control proteins called

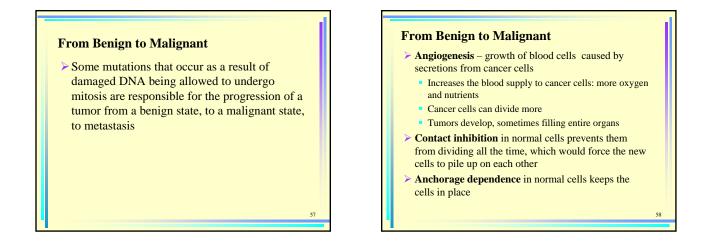

proto-: before -*onco*: cancer

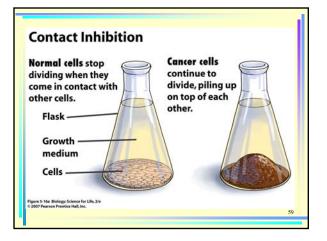

Mutations to Cell-Cycle Control Genes

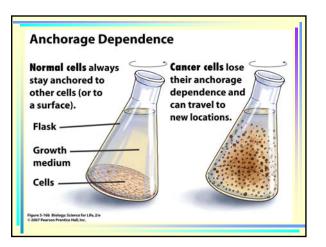

Proto-oncogenes:


- > Normal genes on many different chromosomes
- Regulate cell division
- When mutated, they become ____









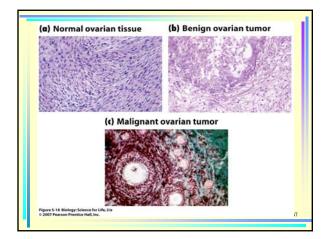


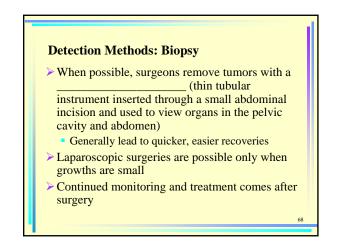
From Benign to Malignant

- Cancer cells divide too quickly and can leave the original site and enter the blood, lymph or tissues
- Most cells divide a set number (60-70) of times, then they stop dividing
- This usually limits benign tumors to small sizes
- Cancer cells can divide indefinitely, as they are immortal through the manipulation of the enzyme telomerase

Multiple Hit Model

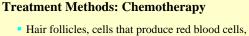
- Multiple mutations are required for the development and progression of cancer
- Multiple hit model describes the process of cancer development
- Mutations can be inherited and/or can stem from environmental exposures
- > Knowledge of cancer **risk factors** is important

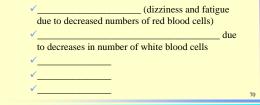

Detection Methods: Biopsy


- Different cancers are detected by different methods
- Some cancers are detected by the excess production of proteins that are normally produced by a particular cell type
- When cancer is suspected, a biopsy, the surgical removal of cells, tissue, or fluid for analysis is performed
 - A needle biopsy is usually performed if the cancer is located on or close to the surface of the patient's body

65

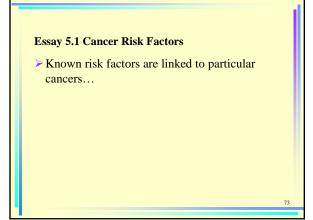
Detection Methods: Biopsy

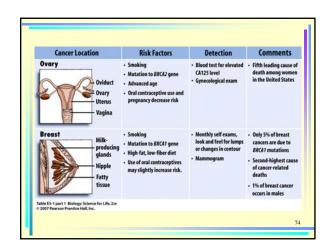

- Under a microscope, benign tumors appear orderly and resemble other cells in the same tissue
- Malignant tumors do not resemble normal tissue

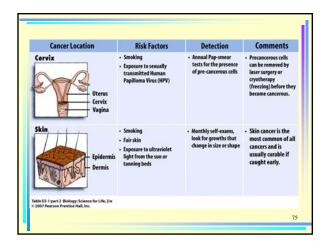


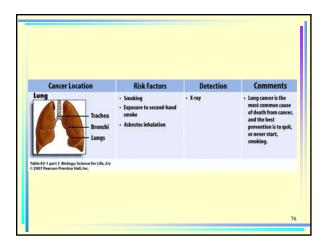
Treatment Methods: Chemotherapy

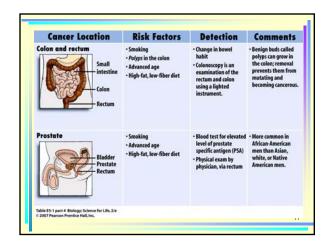
- Chemicals that kill dividing cells are injected into the bloodstream during chemotherapy
- Combinations of chemical agents are used since cancer cells grow resistant
- Adverse effects on chemotherapy patients during treatment are numerous because normal cells that divide rapidly are also affected by chemotherapy treatments

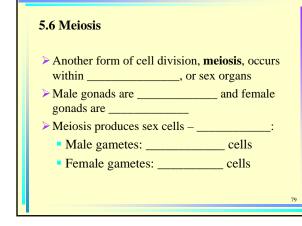

• Hair folicies, cells that produce red blood cells, white blood cells, and cells that line the intestines and stomach are often damaged or destroyed causing




Treatment Methods: Radiation

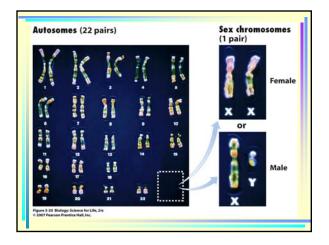

- Radiation therapy uses high-energy particles to injure or destroy cells by damaging their DNA, making it impossible for theses cells to continue to grow and divide
- It is often administered in addition to chemotherapy
- Typically involves a series of 10 to 20 treatments performed after the surgical removal of the tumor; sometimes radiation is used before surgery in order to decrease the size of the tumor

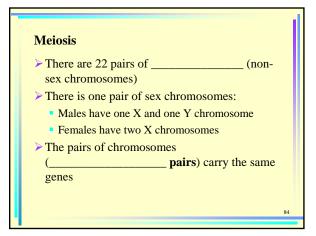

Treatment Methods: Radiation
Radiation therapy is typically used only when cancers are located close to the surface of the body because it is difficult to focus a beam of radiation on internal organs
A patient is in remission if the patient is no longer suffering negative impacts from cancer after a given period

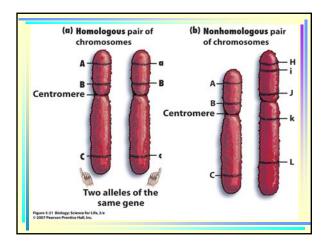


Cancer Location	Risk Factors	Detection	Comments
Testice Penis Testice Scrotum	Abnormal testicular development	 Monthly self exam, inspect for lumps and changes in contour 	Testicular cancer accounts for only 1% of all cancers in men, but is the most common form of cancer found in males between the ages of 15 and 35.
Blood (Leukemia) Platelet Red blood cell White blood cell	 Exposure to high-energy radiation such as that produced by atomic bomb explosions in Japan during World War II 	• A sample of blood is examined under a microscope.	• Cancerous white blood cells cannot fight infection efficiently: people with leukemia often succumb to infections

Meiosis

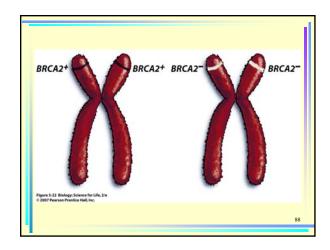

- Gametes have half the chromosomes (23) that _____ cells do (46)
- Meiosis reduces the number of chromosomes by one-half
- Fertilization of the male and female gamete will result in 46 chromosomes


Meiosis


- Which 23 chromosomes end up in a gamete?One of each kind
- > Chromosomes come in pairs
- Each somatic cell has two of every chromosome
- Each gamete has one chromosome from each homologous pair

Meiosis

- A ______ is a photograph of chromosomes in pairs
 The chromosomes have already been
- replicated and are in the shape of the letter X

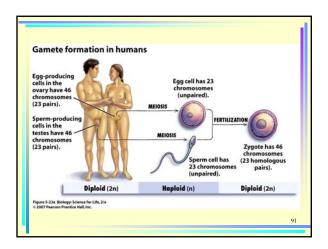

Meiosis

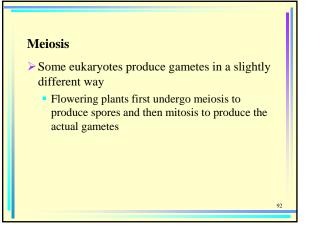
Each homologous pair has the same genes > Both chromosomes will have the genes on

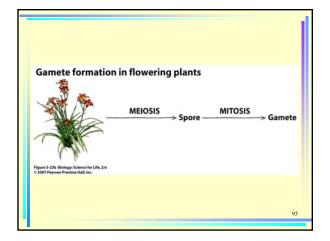
- them in the exact same place
- > Different versions of the same gene are called

Meiosis

- During the S phase of interphase, the DNA is copied and the homologous chromosomes consist of sister chromatids
- All four sister chromatids carry the same genes at the same locations, but not necessarily the exact same information

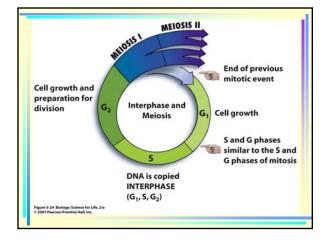



Meiosis


- During meiosis, the homologous pairs are separated, so each cell has only one of each pair
- This condition is called ______ (n)
 having only one of each kind of chromosome

Meiosis

- Meiosis occurs in the sex cells in either the testes or ovaries (for humans) producing gametes
- When the sperm and egg fuse during fertilization, this produces a ______ or fertilized egg
 - This is _____ (2*n*) have two of each kind of chromosome

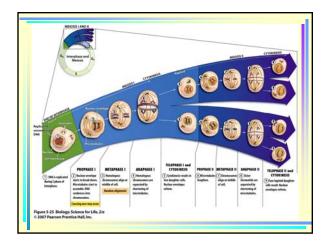


Meiosis

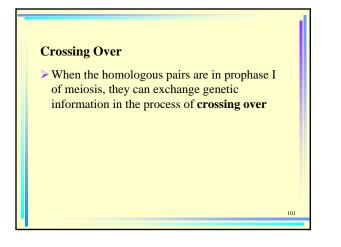
- Meiosis is preceded by interphase (G1, S, G2)
- > Interphase is followed by 2 phases of meiosis
- > Meiosis consists of phases:
 - Meiosis I, in which the homologous pairs are separated
 - Meiosis II, in which the sister chromatids are separated

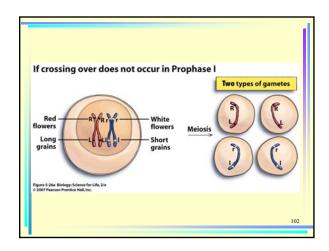
There are four phases in meiosis I:

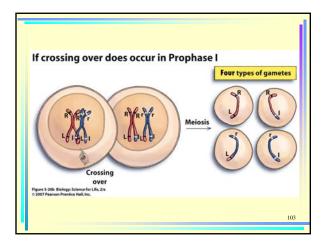
- 1. Prophase I homologous pairs come together
- 2. Metaphase I the homologous pairs line up at the equator...
- 3. Anaphase I the homologous pairs separate
- 4. Telophase I nuclear envelopes reform

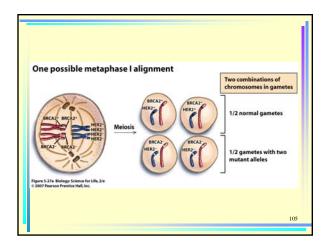

Meiosis II

There are four phases in meiosis II:


- 1. Prophase II nuclear envelopes disappear
- 2. Metaphase II chromosomes line up at equator
- 3. Anaphase II sister chromatids separate
- 4. Telophase II nuclear envelopes reform


Meiosis


- Since there are two separations, we end up with four cells
- Notice that the gametes are haploid having one chromosome from each pair
- Each gamete carries half the genetic information as the parent


Crossing Over and Random Alignment There are millions of possible combinations of genes that each parent can produce because of: Crossing over Random alignment of homologous pairs

